Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Площадь квадрата
Для вычисления площади квадрата нужно умножить его длину на саму себя.
S = a • a
S = a • a
Пример:
SEKFM = EK • EKSEKFM = 3 • 3 = 9 см2
Площадь прямоугольника
Для вычисления площади прямоугольника нужно умножить его длину на ширину.
S = a • b
S = a • b
Пример:
SABCD = AB • BCSABCD = 3 • 7 = 21 см2
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.
Площадь сложных фигур
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
SABCE = AB • BCSEFKL = 10 • 3 = 30 м2
SCDEF = FC • CD
SCDEF = 7 • 5 = 35 м2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKLS = 30 + 35 = 65 м2
Ответ: S = 65 м2 - площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
Рассмотрим прямоугольник:
АС - диагональ прямоугольника ABCD. Найдём площадь треугольников ABC иACD.
Вначале найдём площадь прямоугольника по формуле.
SABCD = AB • BCSABCD = 5 • 4 = 20 см2
S ABC = SABCD : 2
S ABC = 20 : 2 = 10 см2
S ABC = S ACD = 10 см2.
Комментариев нет:
Отправить комментарий